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Limitations to Propagule Dispersal 
Will Constrain Postfire Recovery 
of Plants and Fungi in Western 
Coniferous Forests

NATHAN S. GILL , MONICA G. TURNER , CARISSA D. BROWN , SYDNEY I. GLASSMAN , SANDRA L. HAIRE , 
WINSLOW D. HANSEN , ELIZABETH R. PANSING , SAMUEL B. ST CLAIR , AND DIANA F. TOMBACK

Many forest species are adapted to long-interval, high-severity fires, but the intervals between severe fires are decreasing with changes in climate, 
land use, and biological invasions. Although the effects of changing fire regimes on some important recovery processes have previously been 
considered, the consequences for the dispersal of propagules (plant seeds and fungal spores) in forest communities have not. We characterize 
three mechanisms by which changing fire regimes disrupt propagule dispersal in mesic temperate, boreal, and high-elevation forests: reduced 
abundance and altered spatial distributions of propagule source populations, less effective dispersal of propagules by wind, and altered behavior 
of animal dispersers and propagule predators. We consider how disruptions to propagule dispersal may interact with other factors that are 
also influenced by fire regime change, potentially increasing risk of forest conversion. Finally, we highlight urgent research topics regarding how 
dispersal limitation may shape twenty-first century forest recovery after stand-replacing fire.
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Pathways to forest recovery following disturbance   
 are becoming less certain (Johnstone et  al. 2016, 

Halofsky et  al. 2020) as the frequency, size, and severity 
of forest fires increase in many regions across the globe 
(Bowman et  al. 2013, Westerling 2016, Ward et  al. 2020). 
Forest taxa, including trees, understory plants, and fungi, 
have evolved an array of traits and recruitment strategies that 
align with selective forces of historical disturbance regimes, 
such as the ability to withstand fire, thrive in postfire habi-
tat, resprout, or regenerate from spore banks or seedbanks 
in the soil (Crowther et  al. 2014, Glassman et  al. 2015) or 
canopy (e.g., serotiny; see box 1; Enright et al. 2014, Stevens 
et  al. 2020). Historically, such strategies supported post-
disturbance recovery, leading to predictable successional 
development and eventually mature stand composition (e.g., 
Lloret et  al. 2012, Romme et  al. 2016). However, recruit-
ment strategies that sustained recovery for millennia may be 
maladapted to rapidly changing fire regimes (box 1; Enright 
et al. 2015, Johnstone et al. 2016, Barton and Poulos 2018, 
Coop et al. 2020). Propagule dispersal is a key process in the 
recovery of communities but will diminish in effectiveness, 
not only where altered disturbance regimes change or reduce 

biological legacies (box 1; Turner et  al. 1998, Johnstone 
et al. 2016, Hughes et al. 2019) but also as changing climate 
influences regeneration niches (Hansen et al. 2018, Hoecker 
et  al. 2020). In this article, we extrapolate from literature 
and our collective understanding the probable consequences 
of altered fire regimes and especially the rising pressure 
of propagule dispersal limitations on forest recovery. We 
illustrate how fire regime change has long-lasting effects 
on fundamental ecological processes that determine forest 
structure (i.e., dispersal) and discuss research needs that will 
clarify these effects and management practices that mitigate 
the consequences.

Mesic temperate, boreal, and high-elevation forests of 
western North America provide examples of how a wide 
variety of dispersal processes and recovery strategies are 
responding to changing fire regimes (Stevens-Rumann and 
Morgan 2019). The area burned and the lengths of the 
fire season in these forest types are increasing with warm-
ing climate (Kasischke and Turetsky 2006, Flannigan et  al. 
2009, Sanford et  al. 2015, Westerling 2016, Bowman et  al. 
2017), and high-severity fires, which leave fewer patches 
with propagule production, are also increasing (Parks and 
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Abatzoglou 2020). In some regions, not only are natural 
ignitions more frequent than in the past (Veraverbeke et al. 
2017, Bieniek et  al. 2020), but anthropogenic ignitions are 
also on the rise, further lengthening the fire season (Balch 
et al. 2017). However, not all recent fire activity has meant a 
departure from historical fire regimes. In dry, mixed-conifer 
forests of western North America, which are adapted to 
frequent, low-severity regimes, fire suppression decoupled 
fire activity and climate, creating a fire deficit (Marlon et al. 
2012). Recent increases in fire frequency in these forests 
mark a return to historical fire frequencies and are, in some 
cases, moving landscapes back toward historical conditions, 
whereas in other cases, fires burning after long periods of 
suppression have been at higher severity than historical fires 
and may therefore diverge from historical conditions. These 
processes in dry, mixed-conifer forests are not addressed in 
this review. Forests that fall within the scope of this review 
are mesic temperate, boreal, and high elevation forests that 
historically burned at long intervals (e.g., hundreds of years) 
and are now burning more often. We define fire severity as 
the quantifiable effects of fire on organisms, communities, 
and ecosystems (e.g., percent damage or mortality) and 
frequency as the number of fires burning at a specific loca-
tion within a given period of time (e.g., fires per 100 years; 
Turner 2010).

The mechanisms of propagule dispersal vary and are 
therefore affected in different ways and to different degrees 
by altered fire regimes. First, we define propagule dispersal 
as the movement of propagules (i.e., seeds and spores) from 
their origin source to a site at which they may establish as 

new individuals (Nathan 2013). For many forest communi-
ties in which propagules are dispersed primarily by wind 
and gravity, distance from propagule sources strongly influ-
ences both patterns and rates of forest regeneration (Stevens-
Rumann and Morgan 2019). Seed dispersal by wind typically 
follows a negative exponential pattern over distance, with 
most seeds falling close to the source (Greene and Johnson 
1996, Nathan and Casagrandi 2004). This distribution pat-
tern is also true of fungal spores (Galante et al. 2011). Plants 
and fungi that are readily killed by fire and lack resprouting 
mechanisms or seed or spore banks must rely on dispersal 
from surviving patches within the burned area or from the 
surrounding live forest. Most conifer and understory plant 
seeds exhibit a two-phase mode of seed dispersal, where pri-
mary seed dispersal by wind, gravity, or animals is followed 
by seed movement to new locations through granivorous or 
frugivorous birds, mammals, or insects (Nathan and Muller 
Landau 2000, Vander Wall 2003, Vander Wall and Longland 
2004, Tomback 2016, Pessendorfer et al. 2016, Vander Wall 
et al. 2017). Fungal spores can also disperse in a one- or two-
stage process by air movement, rain and water, invertebrates, 
or vertebrates (Malloch and Blackwell 1992, Vašutová et al. 
2019). Given that fungi associations facilitate growth for 
many forest trees and understory plants (Read et  al. 2004, 
Martin et al. 2016), stabilize soil (Rillig and Mummey 2006), 
and play critical roles in recycling nutrients (McGuire and 
Treseder 2010), postfire fungal spore dispersal is required 
for forest and soil recovery (Hart et al. 2005). As fire regimes 
change, dispersal processes may be disrupted by limita-
tions in primary propagule dispersal, secondary disperser 

Box 1. Key terms.

Biological legacies: Residual elements such as organisms, organic materials, and organically generated environmental patterns that 
persist through a disturbance and influence the recovering ecosystem (Franklin et al. 2000).

Fire refugia: Patches of organisms that endure many fires by consistently burning less severely or not at all relative to the surrounding 
matrix (e.g., persistent refugia, Meddens et al. 2018) as a result of rocky outcrops, cool, moist conditions maintained by topography, 
or other areas afforded protection by topographic position. Stochastic factors including fire weather are important drivers of surviving 
patches that are less likely to persist through multiple fire events (Krawchuk et al. 2016).

Fire regime: The generalized description of the historical or prevailing role of fire in an ecosystem over the long term, described by 
parameters such as frequency, severity, size, and seasonality, among others (Krebs et al. 2010).

Mycorrhizal fungi: Symbiotic fungi associated with the roots of 80%–90% of plant species, often providing nutrients and other ben-
efits in exchange for photosynthetically derived carbon (Brundrett and Tedersoo 2018)

Propagule dispersal: The movement of propagules (i.e., seeds and spores) from their origin source to a site at which they may establish 
as new individuals (Nathan 2013).

Pyrophilous fungi: “Fire-loving” fungi—any fungi adapted to withstand fire, although a subclass of pyrophilous fungi are specifically 
stimulated by fire or may fruit only on burned substrates (Bruns et al. 2020).

Serotiny: A plant adaptation by which seeds are stored in closed capsules (e.g., cones) that open under the high temperatures of fire, 
releasing seeds into the postfire seed bed

Zoochory: Animal-mediated dispersal of seeds and spores through scatter hoarding (propagules are cached in large or small num-
bers), epizoochory (e.g., burrs latched to an animal’s fur or skin) and endozoochory (propagules that are digested and remain viable 
when deposited in feces).
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availability and behavior, or microsite availability, affecting 
the timeframe of forest tree, understory, and fungal recovery.

Forest recovery will continue to be sensitive to struc-
ture, composition, and spatial pattern of propagule sources 
(McDowell et al. 2020, Peeler and Smithwick 2020) and the 
balance of different dispersal modes, which are all influ-
enced by fire regime change. The size and spatial pattern of 
high-severity burned patches can limit propagule dispersal 
for tree (Greene and Johnson 2000), understory (Whitman 
et al. 2019a), and fungal (Adams et al. 2013, Glassman et al. 
2017) species. Therefore, small fires with complex mosa-
ics and high edge-to-area ratios will facilitate propagule 
dispersal into burned patches for certain species. Increased 
frequency of high-severity fires can prevent maturation of 
species that seedbank (e.g., immaturity risk, Keeley et  al. 
1999; interval squeeze, Enright et  al. 2015) or spore bank 
(Glassman et  al. 2015) and influence surrounding forest 
structure and composition. More frequent fires can also 
reduce richness of fungal decomposers, slowing decomposi-
tion rates, influencing nutrient availability, and altering for-
est structure (Hopkins et al. 2020).

Forest recovery after disturbance is not necessarily a 
binary phenomenon of success or failure. Rather, it is a con-
tinuum (Tepley et  al. 2013). Densities of forest plants and 
fungi can recover throughout succession to varying degrees, 
as can community diversity. Relative abundances of species 
may change even while community composition remains 
the same, or conversions to novel forest types or to shrub 
or grasslands may occur. These changes may aid system 
adaptation to new climates and fire regimes (Messier et al. 
2015, Tepley et al. 2017) but may also create positive feed-
backs leading to more frequent fire and loss of key species. 
For example, invasive species may introduce self-reinforcing 
compositional change, because they often exhibit traits 
that are advantageous under frequent fire (D’Antonio and 
Vitousek 1992, Fusco et al. 2019). Or postfire recovery may 
follow a trajectory toward the prefire compositional state 
but be substantially delayed (Anderson-Teixeira et al. 2013, 
Freund et  al. 2014). In some cases, conversion to nonfor-
est (Coop et  al. 2020) or compositionally different forest 
(Johnstone et  al. 2010, Millar and Stephenson 2015, Gill 
et al. 2017) may be how ecosystems adapt or adjust to new 
climate and fire regimes.

In settings in which patches of high-severity fire are 
homogeneous and large, plant (Tomback et al. 1990, Turner 
et al. 2003, Pansing et al. 2020) and fungal (Peay et al. 2012) 
species from the regional pool that are adapted to long-
distance dispersal may gain advantage. Propagules may also 
disperse from sources within burned patches, according to 
a few general mechanisms. Within-patch propagule sources 
may include those with adaptations to withstand fire. Live 
forest patches can also persist through multiple fires where 
topography consistently maintains cool, moist conditions or 
where fuel breaks occur (i.e., fire refugia; see box 1; Camp 
et  al. 1997, Kolden et  al. 2017, Meddens et  al. 2018, Coop 
et  al. 2019; note that we distinguish fire refugia, which 

persist through multiple fires, from survivors of a single fire 
due to spatial heterogeneity in burn severities). Therefore, 
survivors are able to disperse propagules from within the 
burn, which can accelerate recovery of the prefire commu-
nity. Individual surviving trees can serve not only as propa-
gule sources but also as microsites for other species (Fuller 
and del Moral 2003). On an even finer scale, microtopogra-
phy and variation in surface fuels create heterogeneity in soil 
heating, leading to patchiness in plant seedbank and fungal 
spore bank legacies. Some propagule sources have traits that 
allow them not necessarily to withstand fire, but to have new 
establishment stimulated by high-severity fire (e.g., heat-
stimulated release of seeds from cones in Pinus contorta var. 
latifolia and heat stimulation of Ceonothus velutinus seeds 
and Neurospora crassa fungal spores).

Mesic temperate, boreal, and high elevation coniferous 
forests of western North America have historically had abun-
dant propagule sources, interspersed in fine, heterogeneous 
patches after long intervals between stand-replacing fires but 
are now under pressure from dispersal limitation because of 
increased fire frequency (figure 1; Harvey et al. 2016a). We 
explore how changes in these fire regimes may confer relative 
advantages and disadvantages to certain trees, understory 
plants, and fungi on the basis of their dispersal modes and 
legacies that will influence propagule dispersal. Changing fire 
regimes alter the arrangement of seed and spore bank forest 
legacies within and surrounding burn perimeters (see the 
“Breaking the bank” section), alter wind-mediated dispersal 
via changes to the structure and composition of propagule 
source populations (see the “Blowing in the wind” section), 
and change the behavior of animal propagule dispersers and 
predators (see the “Fat tails” section; figure 2). We then con-
sider the changing fates of propagules before and after disper-
sal and suggest key questions to address the rising influence 
of dispersal limitation resulting from fire regime change.

Breaking the bank: Reduced seed and spore bank 
legacies within and surrounding the burn
Seed and spore bank legacies result when refugia (box 1) and 
other patches of surviving organisms preserve sexually 
mature individuals, or when dispersal of propagules in 
burned patches occurs despite mortality (either through 
adaptive traits or before delayed mortality after fire). 
Ecological legacies also include postfire features that facili-
tate forest regeneration, such as nurse logs and snags 
(Swanson et al. 2011, Wolf et al. 2021), but seed and spore 
bank legacies are key to forest recovery and may be threat-
ened by frequent, high-severity fire (Landesmann and 
Morales 2018). Distance to live seed source strongly influ-
ences the density of tree regeneration following high-sever-
ity fires (Donato et al. 2009, Kemp et al. 2016, Hansen et al. 
2018). Patches of live forest within burn perimeters enhance 
edge complexity, reducing the distance between centers of 
burned patches and propagule sources. Such elements of 
spatial structure help improve the effective reach of disper-
sal (Johst et al. 2002), particularly for species with limited 
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dispersal ability (Padial et  al. 2014). Fire-tolerant trees, 
such as Douglas fir (Pseudotsuga menziesii), and pyrophi-
lous fungi (box 1), such as Pyronema spp., have traits that 
increase the likelihood of individuals surviving a high-
severity fire (e.g., thick lower bark for Douglas fir, Agee 
1996; and heat-resistant propagules, sclerotia and spores, 
for fungi, Smith et  al. 2015, Bruns et  al. 2020). Mature 
western larch (Larix occidentalis) trees develop thick bark 
on their lower trunks that can resist fire while producing 

most seeds high in the tree canopy (Arno et  al. 1992). 
Eriophorum vaginatum resists fire through its dense tussock 
morphology (Rowe 1983). Although it has been established 
for over a century that pyrophilous fungi that are infrequent 
or undetectable before fire can fruit intensively after fire 
(Seaver 1909, Petersen 1970), the specific mechanisms that 
enable them to survive fire are only beginning to be tested 
(Day et al. 2020, Raudabaugh et al. 2020). Some researchers 
have recently hypothesized that pyrophilous fungi exhibit 

Figure 1. Illustrative examples of fire regime change and consequences for dispersal from mesic temperate, boreal, and high 
elevation forest systems across western North America. (1) Boreal forest, Yukon. Brown and Johnstone (2012). Photograph: 
Carissa Brown. (2) Subalpine forest, Greater Yellowstone Ecosystem. Gill and colleagues (2021). Photograph: Nathan 
Gill. (3) Lower-elevation pinyon juniper forest in the Southern Rockies. Kerns and colleagues (2020). Photograph: Sam 
St Clair. (4) Montane forest, Sierra Nevada. Glassman and colleagues (2016). Photograph: Sydney Glassman. (5) Mixed 
conifer forest, Madrean Sky Islands. Villarreal and colleagues (2020). Photograph: Jose M. Iniguez, USDA Forest Service, 
Flagstaff, Arizona.
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similar traits and strategies to plants (Whitman et  al. 
2019b). The roots and rhizomes of many native understory 
herbaceous plants (and some trees) can also survive high-
severity fires, resprouting quickly then flowering and seed-
ing within burn perimeters (e.g., Turner et al. 1997, Romme 
et  al. 2016). For tree species that employ cone serotiny as 
an adaptation to historical fire regimes, dispersal of stored 
propagules is triggered by the heat of fire, when resin-sealed 
cones open and release seed from fire-killed trees within 
the burn. Lodgepole pine (Pinus contorta var. latifolia), jack 
pine (Pinus banksiana), and black spruce (Picea mariana) 
produce canopy seedbanks of serotinous cones (e.g., Buma 
et al. 2013). Similarly, some saprobic ascomycete fungi are 
not only heat-resistant, but their fruiting is even catalyzed 
by fire (Emerson 1948), and it is possible that spores of 
certain ectomycorrhizal fungi such as Rhizopogon oliva-
ceotinctus may also be heat activated or at least heat tolerant 
(Glassman et al. 2016, Bruns et al. 2020).

How will changing fire regimes affect the patterns of 
propagules dispersing from legacies within and around 
burn perimeters? Evidence from recent fires (since the mid-
1980s) shows that area burned at high severity has increased 
throughout western North America (Parks and Abatzoglou 
2020) and in the US northern Rocky Mountains (Harvey 
et al. 2016a); however, no substantial change in spatial pat-
terns (i.e., patch size and shape complexity within burn 
perimeters) has been detected. In one study, up to 90% of 
the burned area was within 150 meters (m) of forests that did 
not burn in stand-replacing fire and likely served as a seed 
source (Harvey et al. 2016a). However, increased fire severity 
may reduce legacy propagules by leaving fewer or no sur-
viving individuals within burned patches and reducing the 
number or size of surviving islands (Falk 2013, Cansler and 
McKenzie 2014, Johnstone et al. 2016, Stevens et al. 2017), 
including patches that historically may have served as persis-
tent fire refugia (Krawchuk et al. 2016, Meddens et al. 2018). 

Figure 2. Fire regime change alters the dispersal process in three primary ways. If biological legacies (e.g., islands of surviving 
plants and fungi, fire-stimulated propagation) are few within burned patches after short-interval, high-severity fire, mesic 
temperate, boreal, and high elevation forest recovery will increasingly depend on dispersal from out-of-patch sources that 
remain living. The legacy that persists despite the rising pressure of dispersal limitation may benefit, because propagule 
dispersal is sensitive to fire regime change in the following ways: (a) the loss of legacies that serve as propagule sources within 
and surrounding burned patches, (b) increased fire frequency filters stand age and species composition of propagule sources 
at burn edges, altering effective wind dispersal range and success. (c) More frequent and higher severity fire alters postfire 
habitat mosaics and structure of resources, altering the behavior and local communities of animal dispersers and seed 
predators.

biab139.indd   5 18-01-2022   08:50:26 PM

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/advance-article/doi/10.1093/biosci/biab139/6512408 by C

ary Institute of Ecosystem
 Studies user on 26 January 2022



Overview Articles

6   BioScience • XXXX XXXX / Vol. XX No. X https://academic.oup.com/bioscience

Table 1. Taxa with dispersal related advantages and disadvantages due to fire regime change.
Section of article Advantages Disadvantages 

Breaking the bank Resprouters, or others that are catalyzed by fire
Betula neoalaskana (resprouter)
Ceonothus velutinus (catalyzed)
Neurospora crassa (catalyzed)

Fire-adapted species sensitive to immaturity risk (not 
of concern in understory plants and fungi)
Pinus contorta var. latifolia,
Picea mariana

Resisters that are protected or not readily killed by fire
Pseudotsuga menziesii
Eriophorum vaginatum
Pyronema spp.

Avoiders, if refugia become vulnerable
Picea glauca
Linnaea borealis
Mitella nuda

Those with high propagule production or early sexual 
maturation
Picea mariana (early maturity)
Antennaria parvifolia (high production)
Aspergillus spp. (high production)

Those with low or slow propagule production
Pinus albicaulis
Juniperus monosperma 

Blowing in the wind Those that rely primarily on animals or other 
mechanisms instead of wind
Pinus flexilis
Vaccinium membranaceum
Gauteria spp.

Those that rely primarily on wind for dispersal (but with 
limited range)
Abies lasiocarpa
Calluna vulgaris
Inocybe lacera

Wind dispersed, but rapid vertical growth or long 
distance dispersal, including by smoke
Nonserotinous Pinus contorta var. latifolia (rapid vertical 
growth)
Chamaenerion angustifolium (long distance)
Dothideomycete spp. (smoke)

Trees with slow vertical growth, or obligate seeders 
with short dispersal range
Pinus aristata (slow vertical growth)
Abies lasiocarpa (short range)
Ceonothus velutinus (short range)

Fat tails Those with a secondary dispersal mechanism that 
extends range
Pinus ponderosa
Rubus parviflorus

Those that rely primarily on a single dispersal 
mechanism
Pinus albicaulis (nutcracker that depends on older 
forest)

Those with “directed dispersal” into postfire habitat, 
and that are well suited to establish in burned 
substrate
Pinus albicaulis
Senecio eremophilus
Phytopthora spp.

Those with “directed dispersal,” if microsites become 
less common, like logs after “crown fire plus”
Pinus edulis

Note: Some species may receive relative advantages in one regard but disadvantages in another. Because of these possibly counter attributes 
and many unknown aspects of dispersal ecology of some species (especially fungi), the overall net effects of fire regime change cannot be 
determined with confidence at this time. However, we emphasize that conceptualizing, researching, and managing within a framework that 
considers relative advantages and disadvantages wrought by novel patterns of fire will be increasingly important.

Presumably, lack of surviving patches would affect fungi 
similarly to plants, because ectomycorrhizal fungi appear to 
adhere to island biogeography principles (Glassman et  al. 
2017) and air-associated fungi also follow distance decay 
patterns (Adams et al. 2013).

Over the long term, the potential for sustained propa-
gule dispersal from within burned patches will depend on 
whether within-patch legacies can persist under changing 
fire regimes (Krawchuk et  al. 2020, Meddens et  al. 2018). 
Spatial heterogeneity in severity is required to ensure these 
legacies are maintained. Changes to the fire regime that 
reduce propagule dispersal effectiveness or lead to reproduc-
tion failure will compromise postfire regeneration. Dispersal 
success may be further reduced if the extent of burned area 
frequently falls beyond effective propagule dispersal dis-
tances (e.g., increased areal extent of the high-severity or 
core area, reduced patch complexity; Cansler and Mackenzie 
2014, Johnstone et  al. 2016). Statistical models suggest 
that burned area will increase markedly into the future 
(Westerling et al. 2011, Abatzoglou and Williams 2016), and 
dispersal limitation may become more pronounced if patch 
sizes increase alongside fire sizes (Cansler and McKenzie 

2014). Fungi and obligate seeder plants recovering far in the 
interior of burned patches are likely to do so more slowly 
than those established near burn perimeters as burn patch 
size increases (table 1). Even long-distance-dispersing ecto-
mycorrhizal fungi are unlikely to disperse farther than ten 
kilometers (Peay et al. 2012).

For serotinous plant species able to regenerate within a 
burn perimeter despite fire-induced mortality, regeneration 
requires that the interval between successive fires is longer 
than the time required to reach reproductive maturity and 
produce sufficient viable seed (e.g., Buma et al. 2013, Viglas 
et al. 2013). As stand-replacing fires occur more frequently 
(Harvey et al. 2016a, Parks and Abatzoglou 2020), serotinous 
species are vulnerable to immaturity risk (Keeley et al. 1999, 
Halofsky et  al. 2020). Although complex fire perimeters 
leave surprisingly high percentages (58%–75%) of burned 
areas relatively close (95–200 m) to live forest edges (Turner 
et  al. 1994, Donato et  al. 2009, Kemp et  al. 2016), in the 
most extreme cases, large, contiguous patches of forest have 
reburned at very high severity, creating a lack of surround-
ing propagule supply combined with in-patch immaturity 
risk, yielding no tree regeneration (Brown and Johnstone 
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2012). This leaves severely burned immature stands depen-
dent on dispersal from outside burn perimeters rather than 
through legacy propagules (Gill et  al. 2021). Such depen-
dence will render postfire recovery far more sensitive to the 
spatial pattern, age, structure, and composition of live forest.

Blowing in the wind: Changing structure and 
composition of wind-dispersed propagule source 
populations
Wind is a primary mode of propagule dispersal for overstory 
plants (Burrows 1975, Howe and Smallwood 1982), fungi 
(Allen et  al. 1989, Brown and Hovmøller 2002), and some 
fire-sensitive obligate seeder understory plants (e.g., C. velu-
tinus), but most understory plants depend more heavily on 
resprouting or dispersal by animals than dispersal by wind 
(Hughes et  al. 1994). Most wind-dispersed conifer seeds 
disperse within 200 m of source trees, with the majority of 
seeds falling at shorter distances (McCaughey and Schmidt 
1987, Greene and Johnson 2000), and most basidiomycete 
fungal spores fall within 1 m of their source (Galante et al. 
2011, see also Chaudhary et al. 2020 concerning arbuscular 
mycorrhizal fungi). Understory herbaceous species known 
to colonize burned areas primarily by wind dispersal can 
do so rapidly (e.g., Chamaenerion angustifolium). Along 
with seed morphology, the effectiveness of wind dispersal 
for any species is influenced by wind direction, wind speed, 
and seed release height (Bohrer et al. 2008), all of which can 
vary with forest structure, tree morphology, and topography 
(Cousens and Rawlinson 2001, Savage et al. 2011, Damschen 
et al. 2014, Peeler and Smithwick 2020).

Changes in fire frequency, size, and severity affect forest 
structure and composition, which, in turn, influence seed 
and spore dispersal by wind. When forests are immature, a 
propagule source may be absent, and even if adjacent stands 
are beginning to mature, seed dispersal from young forests 
of short stature into recent burns declines precipitously 
over very short distances (less than 5 m) from source trees 
(Gill et  al. 2021). Taxa that overcome these limitations by 
surviving fire and retaining mature propagule banks will be 
at relative advantage as dispersal and regeneration unfold 
in the years after fire. Changes to forest structure may also 
influence wind turbulence (Damschen et  al. 2014), but it 
has not been determined whether structural effects from 
increased stand-replacing fire might enhance or reduce 
propagule dispersal.

Although wind-dispersed tree species are affected by 
fire-determined structure in this way, understory plants are 
closer to the ground and exhibit less variability in vertical 
height. They reach maximum height more rapidly and do 
not have the same dispersal-enhancing effects that trees 
have from high release points of propagules. Therefore, we 
expect the propagule dispersal of wind-dispersed under-
story plants to be relatively unchanged by the fact that 
increased frequency of severe fires will promote younger 
forests. In addition to short-statured plants, those wind-
dispersed tree species that exhibit rapid vertical growth and 

a tendency to colonize postfire environments (pioneers such 
as Populus tremuloides, Pinus contorta and P. banksiana, and 
Chamaenerion angustifolium) may gain relative advantages 
over slower growing wind-dispersed trees (table 1). The dis-
persal of fungi that tend to grow high off the ground on the 
stems and foliage of trees or on later successional tree species 
(e.g., Looby et al. 2020) may also be affected by increased fire 
frequency in the same way, as opposed to those that explic-
itly release spores from the forest floor.

In addition, certain plant and fungal taxa produce more 
propagules, disperse farther or colonize at a higher rate than 
others (Tomback et  al. 1990, Vander Wall and Longland 
2004, Peay et al. 2012). Therefore, increased fire frequency 
and increased size of patches of high severity may confer 
relative advantages to taxa with rapid reproductive maturity 
(e.g., Picea mariana) or long distance propagule dispersal 
(e.g., Pteridium aquilinum, Suillus pungens). It is likely 
that larger burned patches will disproportionately benefit 
plants and fungi with long distance dispersal capabilities. 
This long distance dispersal may occur through wind 
(e.g., Chamaenerion angustifolium, Populus tremuloides, 
Thelephora terrestris), through animals (e.g., Pinus flexilis, 
Rhizopogon olivaceotinctus, Vaccinium spp.), or in the case of 
some fungal spores, such as Ascomycetes in the Hypocreales, 
Dothideomycetes, and Eurotiomycetes, through wildfire 
smoke (Mims and Mims 2004, Kobziar et al. 2018). Species 
that rely on propagule dispersal by animals will be subject to 
other factors related to fire regime change, different from the 
factors affecting primarily wind-dispersed species.

Fat tails: Altered behavior of animal dispersers  
and granivores
Animal-mediated seed dispersal of conifers, understory 
plants, and fungi can facilitate postfire recovery, in part 
because it may substantially lengthen or fatten the tails of 
dispersal curves. Extended dispersal range and increased 
rates of propagule delivery come primarily from zoochor-
ous (animal mediated; see box 1) dispersal mechanisms 
including scatter hoarding (seed caching), endozoochory (a 
consequence of frugivory where seeds pass through diges-
tive tracts), and epizoochory (where propagules are carried 
outside of dispersal vectors, e.g., burrs attached to fur). 
Scatter-hoarding small mammals gather and cache already 
dispersed seeds, moving them up to an additional 70 m 
from their sources (Vander Wall 1993, 2003, Vander Wall 
and Longland 2004). Small mammals are key dispersers for 
many western forest fungal taxa, including ectomycorrhizal 
fungi that are critical partners with conifer trees (Flaherty 
et al. 2010, Vašutová et al. 2019, Stephens and Rowe 2020). 
Spore dispersal by small mammals occurs primarily through 
fruiting body (sporocarp) ingestion and subsequent def-
ecation. Similarly, ungulates can be important propagule 
dispersers for understory plants (Albert et  al. 2015) and 
arbuscular mycorrhizae (Vašutová et al. 2019). Invertebrates 
also may be important dispersers of both plant seeds 
(Warren and Giladi 2014) and fungal spores (Jacobsen et al. 
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2017). Avian frugivores disperse understory plants through-
out their territories through seed regurgitation and gut pas-
sage (e.g., Hagar 2007, Beck and Vander Wall 2011). Clark’s 
nutcrackers (Nucifraga columbiana) will harvest seeds from 
coniferous forests across elevations and cache them within 
different forest communities and at distances as far as 32 
kilometers (Vander Wall and Balda 1977, Tomback 1978, 
Lorenz et al. 2011).

In particular, seed-caching dispersers not only fatten 
and lengthen the tails of dispersal curves, they also often 
show directed seed dispersal, wherein they disperse seeds to 
specific microsite types (Nathan and Muller-Landau 2000), 
resulting in higher seed germination and seedling survival 
(Wenny 2001, Vander Wall and Longland 2004). The con-
sequences with respect to potential seed germination and 
establishment of caching and cache microsite selection 
behavior vary with species of disperser. In western conifer-
ous forests, important conifer seed dispersers include sev-
eral granivorous birds of the family Corvidae (Aphelocoma 
spp., Cyanocitta stelleri, Gymnorhinus cyanocephalus, and 
Nucifraga columbiana), the deer mouse (Peromyscus man-
iculatus), and taxa in the squirrel family, primarily chip-
munks (Neotamias spp.) and the golden-mantled ground 
squirrel (Spermophilus lateralis)—all widely distributed. 
These animals differ in their seed caching behavior not only 
in dispersal distances (Tomback 1978, Vander Wall and 
Balda 1981, Vander Wall 1993, Lorenz et al. 2011) but also 
in ways that affect the probability of seed germination and 
seedling establishment, including seed number, cache depth, 
substrate, and relation to microsite features such as shrubs 
and protective (nurse) objects (Tomback 1978, Tomback 
et  al. 2001, Briggs et  al. 2009). Animals may also exhibit 
preferences for caching seeds of certain plant species on the 
basis of seed size or nutritional quality (Lobo et  al. 2013). 
Therefore, not all propagules are dispersed with the same 
probability to suitable microsites.

Changing fire regimes will broadly and indirectly influ-
ence zoochorous dispersal of propagules via modifications 
to habitat structure (including spatial pattern of mosaics, 
patch connectivity, and both horizontal and vertical struc-
ture) and resource availability. Fire severity and landscape 
heterogeneity are key covariates when considering fire-
mediated changes to habitat structure for animal dispersers 
and the consequences for species occurrence and commu-
nity composition (Kotliar et al. 2007, Fontaine and Kennedy 
2012, Flesch et  al. 2016, Tingley et  al. 2016, White et  al. 
2016). Responses to these changes in landscape patterns are 
species specific and dynamic. For example, the abundance 
of certain granivore species may increase immediately after 
high-severity fire (e.g., Zwolak et  al. 2010, Fontaine and 
Kennedy 2012), increase only after a temporal delay (Hutto 
and Patterson 2016), or increase only in patches that burned 
at low to moderate severity, while decreasing in patches that 
burned at high severity (Kotliar et  al. 2007, Fontaine and 
Kennedy 2012). With extreme burn severity (e.g., crown fire 
plus; Turner et  al. 2019), nearly complete loss of biomass 

would affect postfire habitat structure, including snag archi-
tecture for insects and birds, as well as downed logs (figure 
2). Because animals often bury caches next to nurse objects 
(Tomback 1978, Vander Wall 1993), changes in the preva-
lence and pattern of these microsites with increased fire 
severity could change propagule caching and dispersal in 
ways yet to be explored. Refuges previously used by small 
mammals to avoid fire (e.g., shelter or underground) may 
become less effective, resulting in increased direct mortal-
ity of animals (Engstrom 2010) and, therefore, the loss of 
nucleated forest recovery (i.e., recovery from propagule 
caches within the fire perimeter) characteristic of some spe-
cies (Banks et  al. 2011). With higher fire severity, greater 
loss of vertical structure, snags, and downed coarse wood 
would leave fewer perches for avifauna, and less cover and 
fewer corridors for small mammals. Increasing fire sever-
ity, frequency, and size, and the resulting loss of propagule 
production through mortality or immaturity risk will reduce 
per capita seed availability. Seed availability for regeneration 
is negatively associated with seed consumption (McKinney 
and Fiedler 2010, Zwolak et al. 2010), suggesting that post-
fire environments may become more seed limited than the 
loss of legacies alone would suggest.

Changes in habitat structure due to altered fire regimes 
that collectively reduce zoochorous propagule dispersal will 
influence trajectories of forest recovery. Increased fire fre-
quency will shift habitats toward early successional stages; 
shortened-interval fires may increase avifaunal species rich-
ness and produce unique community assemblages of birds 
relative to single burns (Fontaine et al. 2009), but the effects 
of shifting intervals between high severity fires are uncer-
tain (Thompson et al. 2007, Fontaine and Kennedy 2012). If 
wildfires burn larger but with continued fine-scale variation 
in severity, effects of altered fire regimes on habitat structure 
(and, in turn, propagule dispersal by animals) may be neutral 
or even beneficial for some species through increased land-
scape heterogeneity (Tingley et al. 2016, White et al. 2016). 
However, this may not be the case if burn patterns become 
more homogeneous, the proportion of high-severity fire 
increases, high-severity burn patches become more isolated 
from surviving legacies, and habitat connectivity decreases. 
Such changes may have negative consequences for propa-
gules that are dispersed over relatively shorter distances (e.g., 
via small mammals or territorial birds, e.g., Steller’s jays; 
table 1), and declining extent of mid- to late-successional 
forests may reduce populations of important avian seed 
dispersers such as Clark’s nutcrackers. Competition-induced 
behavioral changes in dispersers associated with habitat 
use and cache site selection will further influence dispersal 
outcomes. For example, because availability of safe sites 
and seeds decline, many scatter-hoarding species modify 
caching behavior because of perceived pilferage risk, where 
risk is inversely related to seed availability (e.g., Dittel and 
Vander Wall 2018). Some individuals of some species are 
willing to risk predation to reduce the chance of cache pilfer-
age by caching in more open habitats and traveling farther 
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distances to cache (e.g., Munoz and Bonal 2011, Steele et al. 
2014), suggesting that changing fire regimes may result in 
fatter or longer tails of dispersal curves. In contrast, Cao 
and colleagues (2018) found that higher pilferage risk led to 
increased larder hoarding (numerous seeds in a single deep 
cache) behavior, which is unlikely to result in seed germina-
tion (Steele and Smallwood 2002). These potential behavior 
changes underscore the context dependence and uncertainty 
concerning the effects of changing fire regimes on animal-
mediated seed dispersal, and what they will mean for future 
forest trajectories.

Propagule fate: Dispersal is necessary but 
insufficient for forest regeneration
Successful forest regeneration after fire depends not only on 
dispersal of a sufficient number of propagules but ultimately 
on the establishment of individuals within the microen-
vironments to which they are adapted. Dispersal is one of 
many subprocesses of regeneration that determine patterns 
of establishment, in turn influencing ecosystem structure 
and composition over long time periods. We emphasize that 
an understanding of specific interactions with each of these 
subprocesses and fire regimes is necessary to project future 
forest dynamics (figure 3). Other factors, including species 
interactions and external factors such as climate and land 
management, can also affect these processes directly or can 
mediate the effects of fire regime change. We now focus on 
three important processes that are distinct from propagule 
dispersal but intricately connected and critical in determin-
ing propagule fates: the production, persistence, and estab-
lishment of propagules.

Propagule production. Successful dispersal requires an ade-
quate supply of propagules. The major driver of changing 
fire regimes, climate warming, may also alter any step in 
the propagule production process (Giannini and Magnani 
1994, Davis et al. 2018). Annual weather affects pollination, 
seed production, and masting in some tree species, but it 
is currently unclear how warmer temperatures and greater 
year-to-year variation will affect each of these processes and, 
therefore, seed production (e.g., Pearse et al. 2016). Spatial 
configuration matters in this situation as well; for example, 
pollination efficiency, seed production, and viability may 
decline if mature trees become increasingly isolated (Rapp 
et al. 2013, Brown et al. 2019). Earlier snowmelt, later snow-
pack, and summer drought increase mortality of mature 
trees, further reducing seed production (van Mantgem et al. 
2009, Pederson et al. 2010).

Pests and pathogens also reduce propagule production 
potential. Warming has triggered widespread outbreaks of 
many native insects, especially Dendroctonus bark beetles 
(Raffa et  al. 2008). For nonserotinous tree species such as 
Douglas fir, these outbreaks may kill a high proportion of 
mature trees (thereby ending seed production) such that 
they eliminate for decades the seed supply needed for regen-
eration if those forests burn (Harvey et  al. 2013). Native 

and exotic pathogens that kill conifers (e.g., Oomycete 
Phytopthora root rots, fungal rusts Cronartium ribicola) or 
reduce growth rates (e.g., fungal Dothistroma needle blight) 
may increase in prevalence over time, influenced by regional 
or local climate (Sturrock et al. 2011) and compounded by 
wildfire (Metz et al. 2013).

Propagule persistence. The production of propagules in sur-
rounding live forest does not guarantee their dispersal into 
burned landscapes; animals can influence propagule supply 
and fate through pre- or postdispersal predation (Connolly 
et  al. 2014). Predispersal seed predation by red squirrels 
(Tamiasciurus hudsonicus) from serotinous cones and by 
various animals from nonserotinous cones can greatly 
reduce seed availability (Smith and Balda 1979, Benkman 
et al. 1984, McKinney and Tomback 2007), and postdispersal 
predation could be increasingly important where propagules 
are limited (Pansing et  al. 2017, Frock and Turner 2018). 
Change in postfire environments can also alter the behavior 
of propagule predators (Sasal et al. 2017), just as it may alter 
the behavior of animal dispersers. Fires in desert, prairie, 
and forest ecosystems alter rodent community abundance 
and composition (e.g., Zwolak et  al. 2010) and, therefore, 
rodent-driven seed fates.

Propagule establishment. Following propagule dispersal into 
postfire landscapes, regeneration will also be strongly influ-
enced by microsite conditions (Stevens-Rumann et al. 2017). 
Conifer seed germination and seedling establishment are 
more sensitive to postfire environmental conditions than 
older age classes (Tomback et al. 2001, Dobrowski et al. 2015, 
Barton and Poulos 2018), and the postfire environment can 
be highly influenced by nonliving legacies such as snags 
(Wolf et al. 2021) and woody debris (Swanson et al. 2011). 
Exposure to unusually hot soil surface temperatures, low soil 
moisture, and freezing events can all trigger mass seedling 
mortality (Johnson et al. 2011). Indeed, declining soil mois-
ture across postfire forests of the western United States has 
already begun to reduce tree seedling survival (Harvey et al. 
2016b, Andrus et  al. 2018, Kemp et  al. 2019). Analyses of 
33 fires across lower elevation forests of the Western United 
States identified clear climate thresholds for seedling estab-
lishment, and in the last 20 years, these thresholds have been 
crossed regularly (Davis et al. 2019). Further work is needed 
to explore whether similar thresholds have been crossed in 
boreal and subalpine forests. Projections of future climate 
for western forests suggest soil moisture will continue to 
decline with warming temperature and increasing evapora-
tive demand (Mankin et al. 2017, Cook et al. 2020). Postfire 
climate plays a primary role in the regeneration niche of 
conifers (Jackson et al. 2009, Stewart et al. 2021), and experi-
ments that simulate how future soil moisture affects seedling 
establishment and survival have found that tree regenera-
tion failure could be widespread (Hansen and Turner 2019, 
Hoecker et al. 2020) with large consequences for landscape 
scale forest structure and composition (Hansen et al. 2020). 
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Meanwhile, reduced snowpack and warming may lead to 
propagule establishment at upper tree lines at increasingly 
higher elevations where substrate allows (Harsch et al. 2009).
In the following sections, we outline key uncertainties and 
next steps in research related to seed and spore dispersal 
under changing fire regimes (box 2).

Net effects of dispersal limitation on forest trajectories with more 
fire. Larger fires, bigger patches of high severity fire, and a 
surrounding matrix of early successional forests could affect 
dispersal processes synergistically, reducing the number of 
propagules that reach burned patches, slowing forest recov-
ery. With continuing climate change, these processes in 
some cases may lead to a state shift in community type (e.g., 
Tepley et al. 2018, Andrade et al. 2021). (See box 2.)

More research is needed concerning these effects at a 
local landscape scale as well as a regional scale. An inte-
grative approach including simulation modelling would 
enable us to test alternative scenarios, to test the magni-
tude of influence of different processes, and to anticipate 
and assess future constraints on propagule dispersal due 
to changes in seed and spore banks, live forest age struc-
ture and composition, and animal behavior. Furthermore, 
area burned and patch sizes affect dispersal processes in 

different ways, and the two must not be 
conflated. Increased size and frequency 
of fires, which, in boreal and high eleva-
tion forests, primarily result from cli-
mate change (Westerling 2016, Bowman 
et  al. 2017, Alizadeh et  al. 2021), will 
influence the matrix of surrounding for-
est over time, determining the source of 
propagules available to colonize burned 
patches from out-of-patch dispersal. 
Increased size of burned patches will 
alter the proportion of landscapes that 
are within range of propagule dispersal. 
Some species may benefit from these 
changes, whereas others may be disad-
vantaged, and others still may benefit 
in one regard and be disadvantaged in 
another (table 1). The potential for non-
linear interactions must be considered, 
including idiosyncratic effects of specific 
conditions, and the relative changes to 
elements of the dispersal process must 
be better understood if we are to antici-
pate future forest trajectories.

Biological invasions and novel species assem-
blages. Reduced dispersal of native 
propagules from within burned patches 
and live forest edges offers opportunities 
for other species to colonize or expand, 
including invaders. Some species could 
be regionally native but establish in new 

local settings as they track their climate niche. Whether this 
is truly a biological invasion is a point of debate. Either way, 
invasion success in postfire landscapes requires dispersal 
into the burned environment (Theoharides and Dukes 
2007), which depends on propagule traits and characteris-
tics of the postfire landscape (Bergelson et al. 1993). More, 
larger fires and higher burn severity are likely to facili-
tate nonnative propagule dispersal (Bergelson et  al. 1993, 
Desprez-Loustau et  al. 2007, Getz and Baker 2008). Even 
though some native species will also gain relative dispersal 
advantages in these settings, many wind-dispersed invasive 
species will be among those well suited to postfire environ-
ments. Compared with native species, nonnative plants 
may also be less reliant on mycorrhizal symbionts (Pringle 
et  al. 2009, Busby et  al. 2013) that are influenced by fire. 
For example, invasive species may introduce compositional 
change, because they often exhibit traits that are advanta-
geous under frequent fire (D’Antonio and Vitousek 1992, 
Fusco et  al. 2019). Invasive plants may also alter fungal 
trajectories because many are associated with arbuscular 
mycorrhizal fungi. These differences from the ectomycor-
rhizal fungi associations of native plants can have large 
impacts on carbon and nitrogen cycling (Averill and Waring 
2018, Mushinski et al. 2021). (See box 2.)

Figure 3. In mesic temperate, boreal, and high elevation conifer forests, patterns 
of forest composition and structure influence and are influenced by processes 
of change in fire regimes. Fire regime change also influences each step of the 
regeneration process directly, as well as indirectly through species interactions 
such as mutualistic symbiosis and predator–prey relationships. We define 
regeneration as being composed of at least four distinct subprocesses related to 
propagules: production, dispersal, persistence, and establishment. Although 
the focus of this review is on the relationship between fire regime change and 
propagule dispersal, each subprocess of forest regeneration is sensitive to 
changing patterns of fire occurrence and each must be considered.
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The introduction of invasive grasses (e.g., Bromus tecto-
rum) that influence fire regimes may be driven in part by 
animal dispersers that thrive in postfire habitat, as has been 
observed at lower elevations (St Clair and Bishop 2019, 
Bishop et  al. 2020). The introduction of invasive grasses 
into disturbed upland forest systems presents a legitimate 
threat to stabilizing feedbacks (Peeler and Smithwick 2018), 
and this threat has been underappreciated to date (Kerns 
et al. 2020). In addition, past fire suppression and land-use 
history contribute to increased high-severity fire in lower 
elevation, dry mixed-conifer forests (Allen et al. 2002, Miller 
et  al. 2009), which can spread upslope to adjacent mesic 
forests (e.g., spruce fir) at higher elevations and result in 
more frequent severe fire than was observed historically in 
those systems (O’Connor et  al. 2014, Alizadeh et  al. 2021, 
Villarreal et al. 2020).

An increase in large patches of high-severity fire with 
reduced propagule supply (e.g., due to high mortality, 
repeated fire, and immaturity risk even in serotinous plants) 
will favor species with the ability withstand high-severity 
fire (e.g., pyrophilous fungi) or to resprout vegetatively (e.g., 
native trees such as Populus tremuloides, Betula neoalaskana, 
and native or invasive grasses if present at time of fire). How 
will novel assemblages that could arise from changing fire 
regimes shape future forest development? Further research 
is needed to understand the net effects on community com-
position and should include taxa ranging from microbes to 
herbaceous and woody vegetation. Because many invasive 
species exhibit traits that confer advantage under severe or 
frequent fire, the interaction between introduced species 
and native plants and fungi that are increasingly disadvan-
taged through fire regime change in mesic temperate and 
boreal forests should be closely monitored, of biological 
invasions into western North American forests has been 
underappreciated to date.

Effects of fire regime change on fungi
Our review indicated a lack of information about fire effects 
on fungal dispersal. Pyrophilous fungi exist, but most 
fire-related research on fungi is based on mushrooms or 
macroscopic fruiting bodies (McMullan-Fisher et al. 2011). 
The specific traits and mechanisms enabling their dispersal 

and survival after fire are largely unknown. Studies examin-
ing genomes (Steindorff et al. 2021) and biophysical assays 
to test the traits of pyrophilous fungi are in their infancy 
(Day et  al. 2020) and ecological theory about their sur-
vival remains speculative (Whitman et  al. 2019b). We are 
not aware of any studies specifically testing how directed 
dispersal may occur with fungi, although it is likely that 
such processes exist given the amount of fungi dispersed by 
animals (Vašutová et al. 2019). Furthermore, we know of no 
studies testing postfire fungal dispersal specifically, and we 
extrapolate from general studies of fungal dispersal (Adams 
et  al. 2013, Peay et  al. 2012, Glassman et  al. 2017). Given 
these uncertainties, many of the mechanisms behind fungal 
dispersal, and specifically how they might be affected by fire 
regime change, remain unknown, and their organization 
into the framework presented in table 1 is somewhat tenu-
ous. Although it is clear that there is differential temporal 
survival of fungal spores residing in spore banks, tests have 
not run longer than a decade (Bruns et  al. 2009, Nguyen 
et  al. 2012) as compared with plants where seedbank sur-
vival over many decades or longer has been studied and 
organized into synthesized frameworks (Csontos and Tamás 
2003). (See box 2.)

Incorporating changes to propagule dispersal into models of future 
forest trajectories.  The assumption that propagules are always 
available will become increasingly erroneous as climate 
warms and mesic temperate and boreal forests burn more 
than in the past. When exploring future forest dynamics in 
the context of environmental change, researchers should be 
cognizant of the key role propagule dispersal plays in devel-
oping forest cover, structure, and function. However, issues 
of scale limit insights from many current models. Seeds and 
spores are nearly always dispersed over shorter distances 
than the spatial grain of the Earth system models used to 
project vegetation responses to climate and disturbance at 
regional to global scales (Clark et al. 2018). Therefore, Earth 
system models rarely represent grid cell to grid cell dispersal 
(Fisher et al. 2018), often assume that seeds are always avail-
able, and largely ignore microbes completely. Furthermore, 
such models often group tree species into few plant func-
tional types, limiting the diversity of dispersal modes that 

Box 2. Key questions to address the rising influence of postfire dispersal limitation.

1.  What is the net effect of fire regime change on the dispersal of plants and fungi (via altered abundance of biotic legacies, spatial 
pattern, forest composition and structure, and behavior of animals that prey on or disperse propagules)?

2.  How will the rising influence of propagule dispersal limitation interact with biological invasions and novel species assemblages?
3.  What are the mechanisms that define pyrophilous fungi, and how will they be sensitive to fire regime change?
4.  How can models that project trajectories of forest change incorporate the relationship between fire regime change and propagule 

dispersal limitation? What are the potential costs (errors) of not representing dispersal in projections of future forest trajectories?
5.  What forest management strategies and treatments will best address the rising pressure of dispersal limitations due to altered fire 

regimes?
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could be parameterized. Wildfires are also simplistically 
represented without considering the spatial heterogeneity 
in burn severity that is so important for creating within-
perimeter legacies (Sanderson and Fisher 2020). (See box 2.)

Forest landscape models that simulate individual trees 
often represent disturbance and dispersal explicitly and 
can be parameterized to capture various modes of dispersal 
(e.g., wind, animal), making them a promising approach for 
quantifying how changing dispersal may influence future 
forests (Seidl et al. 2012, Albrich et al. 2021). However, they 
are computationally expensive and cannot be run at conti-
nental scales. Therefore, to make species-level predictions 
of how dispersal modes may contribute to shifts in forest 
cover, species composition, and stand structure across west-
ern North America, new modeling techniques are needed 
that can scale from the processes that operate over meters 
to the outcomes that manifest more broadly (Rammer and 
Seidl 2019). Such scaling techniques would offer opportuni-
ties to address essential questions identified in this article. 
For instance, how will dispersal and colonization by invasive 
grasses influence postfire tree regeneration and feedback to 
alter fire in the West? How will expected changes in popula-
tions of important seed dispersers and predators influence 
forest trajectories? How do these changes in fine-scale forest 
processes such as propagule dispersal scale up to influence 
broader forest cover, composition, and structure, and what 
are the resulting feedbacks to fire regimes and subsequent 
regional to global climate change? How might limitations in 
propagule dispersal result in alternate postfire community 
trajectories (i.e., alternate states) or novel communities?

The identification of areas in which dispersal limitations 
are likely to contribute to the potential for delayed recovery 
or even transition to nonforest could help resource managers 
efficiently target areas for active management, including for-
est planting. Furthermore, identification of dispersal modes 
that are most and least sensitive to changes in fire regimes 
will allow managers to make more informed decisions as to 
which species and functional groups to monitor, preserve, 
and plant (Anderegg et al. 2020).

Implications for management of mesic temperate, boreal, and high 
elevation forests. The consequences of a changing fire regime 
may be acceptable in some forests, because fires can create 
opportunities for communities to reorganize and adapt to 
environmental change (Buma and Schultz 2020, Schuurman 
et al. 2020). However, forest managers should strive to main-
tain a heterogeneous burn-severity mosaic, even if change 
is deemed appropriate, because patches of live forest serve 
as propagule sources within fire perimeters (Downing et al. 
2019). We suggest that managers keep a running map of 
fire history and severity. Where large patches have burned 
at high severity, forest managers could map surrounding 
areas as critical seed sources and eventually apply prescribed 
burning or fuel thinning treatments to protect these areas 
from future wildfire. However, burnout or backburn opera-
tions in which unburned or low-severity forest patches are 

deliberately and severely burned to reduce fuels increase the 
homogeneity of burned areas and contribute to the loss of 
propagule sources (Backer et  al. 2004). Managed wildland 
fire use might include judicious application of thinning and 
prescribed fire to protect fire refugia or other patches of 
mature forest that sustain propagule supplies (e.g., Hansen 
et  al. 2020) and maintain connectivity among protected 
patches. Fuel reduction and prescribed fire can be used to 
reduce wildfire severity and slow rate of spread (depending 
on weather conditions), perhaps achieving or maintaining a 
mosaic. (See box 2.)

Where sustaining forests in the face of increasing fire 
frequency is a goal, active management to alleviate dis-
persal limitations and direct recovery may be warranted. 
Dispersal limitations may need mitigation where atypical 
short-interval reburns have eliminated local seed supplies, 
where burned areas may be surrounded by immature forest, 
and where future climate conditions are expected to sup-
port forested ecosystems (e.g., Turner et al. 2019, Gill et al. 
2021). Where forest recovery is a goal that is constrained 
by propagule dispersal, tree planting could be strategically 
implemented (Stevens-Rumann and Morgan 2019), tar-
geting homogenous patches of high-severity fire that had 
been dominated by fire-sensitive tree species. Depending 
on goals, the species planted could reflect the prefire com-
munity or other native species better matched to projected 
future climate. In such cases, the critical choice is whether 
to manage for ecosystem persistence or change or, possibly, 
to hedge bets.

Fungi play an especially critical role in forests, influenc-
ing carbon and nitrogen cycling and plant nutrition, and 
their propagule dispersal should therefore be considered 
in management plans in addition to that of trees and 
other plants where possible (Van der Heijden et  al. 2008, 
Crowther et  al. 2019). For example, in many cases, the 
addition of fungal inoculum or soil amendments may be 
necessary to improve forest regeneration (Schmidt et  al. 
2020, Dickie et  al. 2010) but particular attention must be 
paid to sources of inoculum (Maltz and Treseder 2015). 
Further research is needed to better understand which 
fungi are capable of surviving high severity fire and why. 
With this understanding will come an improved capacity to 
manage for success in postfire fungal communities, making 
possible efforts similar to those we have suggested for trees 
and other plants.

Conclusions
As fires across mesic temperate and boreal forests of western 
North America and around the world continue to increase 
in size, frequency, and severity, dispersal limitations of plant 
and fungal propagules are likely to constrain postfire forest 
recovery. These constraints may arise through altered pat-
terns of legacies, immaturity risk, novel forest composition 
and size structure, or altered animal behavior influenc-
ing propagule dispersal and predation. We emphasize the 
importance of identifying and protecting fire refugia (i.e., 
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those patches that are truly persistent through multiple 
fires), as well as maintaining mosaics of mixed-severity 
burned and surviving forest after single fires that provide 
sources of within-patch propagules. Reforestation efforts 
may be highly effective where sites are suitable for forest 
regeneration but beyond the current range of seed and 
spore dispersal. Populations of important seed and spore 
dispersers and predators should be monitored, because their 
dynamics may drive timelines of postfire recovery for trees, 
understory plants, and fungi. The specific sites and success 
of propagule dispersal will increasingly shape the future tra-
jectories of forests (McDowell et al. 2020), and past assump-
tions about the dispersal process may no longer apply.
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